
USING THE PYTHON LIBRARY WHEN CLASSIFYING SCIENTIFIC TEXTS

Ismukanova A.N.
1
, Lavrov D.N.

2
 (Russian Federation), Keldybekova L.M.

3
,

Mukumova M.Zh.
4
 (Republic of Kazakhstan) Email: Ismukanova346@scientifictext.ru

1Ismukanova Aygerim Nauryzbayevna - Postgraduate Student;

2Lavrov Dmitry Nikolaevich - PhD in Engineering, Associate Professor, Head of the Department,

DEPARTMENT OF COMPUTER TECHNOLOGIES AND NETWORKS, FACULTY OF COMPUTER SCIENCES,

OMSK STATE UNIVERSITY NAMED AFTER F.M. DOSTOYEVSKY,

OMSK;
3Keldybekova Liliya Muratbekovna – Teacher;
4Mukumova Marzhan Zhumanovna – Teacher,

DEPARTMENT OF FOREIGN LANGUAGES, FACULTY OF PHILOLOGY,

KOKSHETAU STATE UNIVERSITY NAMED AFTER SH. UALIKHANOV,

KOKSHETAU, REPUBLIC OF KAZAKHSTAN

Abstract: the classification of scientific texts in the Russian and Kazakh languages, by means of assignment of a

universal decimal code (UDC) is an actual problem nowadays. The problem of the classification of scientific

texts is easily solved for the English language due to its simplicity of morphology and syntax. On this way there

is a number of unresolved tasks for the Russian language and practically the usage of analogical reception for

the Kazakh language is not investigated. For the Russian language several researches of applicability of

different approaches were conducted [1-4].

New technologies for the LSA model could represent a important advance of the assessment of scientific texts.

LSA model despite the complexity of the opacity and can be used for a number of different tasks with a

generalization or extension of the meaning of the search query.

Keywords: latent semantic analysis (LSA), machine learning (ML), classification, NLTK library.

ИСПОЛЬЗОВАНИЕ БИБЛИОТЕКИ PYTHON ПРИ КЛАССИФИКАЦИИ

НАУЧНЫХ ТЕКСТОВ

Исмуканова А.Н.
1
, Лавров Д.Н.

2
 (Российская Федерация), Кельдыбекова Л.М.

3
,

Мукумова М.Ж.
4
 (Республика Казахстан)

1Исмуканова Айгерим Наурызбаевна – аспирант;

2Лавров Дмитрий Николаевич - кандидат технических наук, доцент, заведующий кафедрой,

кафедра компьютерных технологий и сетей, факультет компьютерных наук,

Омский государственный университет им. Ф.М. Достоевского,

г. Омск;
3Кельдыбекова Лилия Муратбековна – преподаватель;

4Мукумова Маржан Жумановна – преподаватель,

кафедра иностранных языков, факультет филологии,

Кокшетауский государственный университет им. Ш. Уалиханова,

г. Кокшетау, Республика Казахстан

Аннотация: классификация научных текстов на русском и казахском языках посредством присвоения

им универсального десятичного кода (УДК) является актуальной задачей. Задача классификации

научных текстов прекрасно решается для английского языка в силу простоты морфологии и

синтаксиса этого языка. На данном пути имеется ряд нерешенных задач для русского языка и

практически не исследовано использование аналогичных приемов для казахского языка. Для русского

языка проводились несколько исследований применимости разных подходов.

Новые технологии, для модели LSA (латентного-семантического анализа), могли представлять важное

усовершенствование в исследовании оценки научных текстов.

Модель LSA, несмотря на трудоемкость и непрозрачность, может использоваться для разного ряда

задач при обобщении или расширении смысла поискового запроса.

Ключевые слова: латентный семантический анализ (ЛСА), машинное обучение (МА), классификация,

библиотека NLTK.

UDC 004.89

Python is a dynamic programming language. It interprets object-oriented text model. On Python in

combination with library for works with natural languages NaturalLanguageToolkit (NLTK) the important

component in systems on machine learning is implemented. Python uses standard libraries (for example: NumPy

and SciPy) for scientific research, mathematical calculations and also engineering decisions. Standard manager

of packages in Python is Python Package Index (pip). This program is used for addition of libraries in a program

system.

“Pinistallnltk” is a command for adding NLTK library in our program. Command "Pip freeze" is used to

display the list of libraries in the program.

In Python command “virtualenv” is used for creation of the separate environment, the instrument of

execution of programs, including certain instructions Python and sets of libraries. Creating virtual environment

for execution of the program, we add the following libraries: feed parser, numpy, scipy, NLTK [1].

Categories in Python and NLTK

In the beginning it is necessary to process imitating news feeds RSS, to analyze scientific information with

the help of Naive Bayes Classifier and to clarify them on category by means of an algorithm kNN. Then we turn

on NLTK.

NLTK is an excellent library for processing texts in natural languages, the ready - loaded sets of basic data in

the form of the “body” and also program interfaces for convenient access to these data are applied to it. To install

the “body”, you need to execute the command provided below, more than 10 000 news messages will be loaded

into your catalog ~/nltk_data/corpora/. Categorized data are suitable for imitation of a news feed.

Listing 1. Import of NLTK

$python ………..# we enter an interactive cover

>>> importnltk ………# we import library NLTK

>>>nltk.download()…….# we start the loader and we enter "d" Identifier>reuters…….#..we specify the

"body".

The file nltk_/data/corpora/reuters/cost.txt. contains the list of names of files with notes and also the

categories appointed to each of files.

There is a problem of often-used , but actually non-significant words such as articles, conjunctions and

prepositions. These auxiliary words complicate work. So, a natural language is rather various and it needs

cleaning before work. Python and NLTK allow by means of a method "normalized-words" from RssItem to

exclude all these non-significant words. In particular NLTK cleans the crude text of articles from the built-in

tags by means of only one line of a code. Besides, by means of regular expression it is carried out removals of a

punctuation, then the text is divided into words and is transferred to a lower "body".

Listing 2. Class RssItem

class RssItem:

 ...regex = re.compile('[%s]' % re.escape(string.punctuation))

 ...defnormalized_words(self, article_text):

 words = []

oneline = article_text.replace('\n', ' ')

 cleaned = nltk.clean_html(oneline.strip())

 toks1 = cleaned.split()

 for t1 in toks1:

 translated = self.regex.sub('', t1)

 toks2 = translated.split()

 for t2 in toks2:

 t2s = t2.strip().lower()

 if self.stop_words.has_key(t2s):

 pass

 else:

words.append(t2s)

returnwords

The list of auxiliary words are from NLTK in one line and also other natural languages are supported.

NLTK.corpus.stopwords.words("kazakh ").

NLTK provides several classes of the morphological analysis for further normalization of words.

Classification by a Simple Bayesian Algorithm
The algorithm NaiveBayes, a simple Bayesian algorithm, is widely-known and built-in in NLTK in the form

of a class NLTK.NaiveBayesClassifier. Bayes allows to classify elements upon existence or lack of certain

elements in their structure. As elements, certain words of a natural language are used. The algorithm is not

difficult, it does not mean interrelations between elements. There is a certain class nltk.probability.FreqDist in

NLTK. It helps to define often found words. The following method 'collect-all-word' return the massif

containing all words from all training notes. The massif is processed by method 'identify_rop_words' and returns

often found words. Keys of function of a class of nltk.FreqDist actually are sorted according to the

corresponding values, thereby it is possible to select the 1000 most often found words, specifying the range of

indexes according to syntax Python [3].

 Listing 3. The Usage of a class nltk FreqDist

defcollect_all_words(self, items):

all_words = []

 for item in items:

 for w in item.all_words:

words.append(w)

 return all_words

defidentify_top_words(self, all_words):

freq_dist = nltk.FreqDist(w.lower() for w in all_words)

returnfreq_dist.keys()[:1000]

For imitation of RSS on the NLTK database from scientific texts of Russian and Kazakh it is necessary to

allocate and read the file, for this purpose: / nltk _data/ corpora/ rurers/cats.txt/:

defread_reuters_metadata(self, cats_file):

f = open(cats_file, 'r')

 lines = f.readlines()bp

f.close()

returnlines

Obtaining the characteristics of each message from a tape is carried out by method ~features ~ from a class

RssItem. Using this method the massif at first of all words (all_words) of texts is reduced to a set of unique

words, smaller by the value , due to elimination of similar words. To check in scientific texts of existence or lack

of widespread words it is necessary to execute pass according to the list.

Listing 4. The corresponding Code on Python

deffeatures(self, top_words):

word_set = set(self.all_words)

 for w in top_words:

features["w_%s" % w] = (w in word_set)

returnfeatures

For processing of an algorithm it is necessary to creat a training set of messages and to collect their

individual characteristics. Training of classification holds exactly one place of a code.

Listing 5. Training nltk.NaiveBayes classifier

defclassify_reuters(self):

 ...

training_set = []

 for item in rss_items:

 features = item.features(top_words)

tup = (features, item.category) # tup is a 2-element tuple

featuresets.append(tup)

 classifier = nltk.NaiveBayesClassifier.train(training_set)

One of the methods to distinguish interrelations between words is to join in a set of parameters widespread

phrases from two (bigrams) and three words (trigrams). In NLTK there is a support of these opportunities in the

form of functions nltk.bigrams(...) and nltk.trigrams(...). Just at the library chose from all data set N of the most

often found words, it can identify the most popular two and three-word phrases and use them as parameters.

The Algorithm k-NearestNeigbours
The most demanded algorithm for creation of the recommendations is the algorithm k-NearestNeigbour. This

algorithm creates the list of categories and compares to each category a set of information and data. Then

defining coinciding elements , algorithm compares a set of data. A set of information is provided by a set of

numerical values. The algorithm kNN issues the whole set of guidelines with degrees, on the basis of sets of

scientific texts. In the work as processing of tapes of RSS, the values of tags coincided with categories, and

processing of scientific texts represents work with massive values for 1000 often found words. Creating of each

word in the massif of value can represent the Boolean value (0 pr 1), frequency of occurrence of words as a

percentage or in figures, exponential expression from frequency or will be defined by other value. For tools of

the developer the Python programming language is a laconic and powerful language. It well realizes machine

learning, processes a natural language [2].

Tokenization Function in Python. Tokenization is called a division of data into small parts , i.e. tokens.

Words and punctuation signs belong to tokens. Texts are represented in the form of massif of necessary words.

Then in massif of significant words we make cleaning regarding signs of a punctuation and non-significant

words.

Listing 6. The Functions of Tokenization

-*- coding: utf-8 -*-

import nltk

import string

from nltk.corpus import stopwords

deftokenize_me(file_text):

 #firstly let's apply nltk tokenization

 tokens = nltk.word_tokenize(file_text)

 #let's delete punctuation symbols

 tokens = [i for i in tokens if (i not in string.punctuation)]

 #deleting stop_words

stop_words = stopwords.words(' kazakh')

stop_words.extend(['не', 'мынау', 'солай', 'онда', 'болу', 'қалай', 'мен', '—', 'оған', 'ал'])

 tokens = [i for i in tokens if (i not in stop_words)]

 #cleaning words

 tokens = [i.replace("«", "").replace("»", "") for i in tokens]

returntokens

A standard function from Python library - nltk word_tokenize() was used for work many languages, but we

needed only the Russian and Kazakh languages. The following step we destroy punctuation mark, checking each

word string.punctuation. Next a set of auxiliary words in the Russian and Kazakh languages we import to word

stop from library for work with nature languages NLTK. Having removed from the scientific text all significant

words and punctuation marks in a final stage, we receive the list of words - the necessary terms for further

processing. On machine learning similar systems are implemented on Python with library for works with

scientific texts NaturalLanguageToolkit (NLTK) and their classifications [1-4].

References / Список литературы

1. Moraes R., Valiati J.F., Gavião Neto W.P. Document-level sentiment classification: An empirical

comparison between SVM and ANN. Expert Systems with Applications. 2013, № 40. Рp. 621–633.

2. Pontiki M., Galanis D., Pavlopoulos J., Papageorgiou H., Androutsopoulos I., Manandhar S. SemEval-2014

Task 4: Aspect based sentiment analysis. Proc. 8th Int. Workshop on Semantic Evaluation (SemEval 2014).

Dublin, Ireland, 2014, Рp. 27–35.

3. Medhat W., Hassan A., Korashy H. Sentiment analysis algorithms and applications: A survey. Ain Shams

Engineering Journ., 2014. № 5. Pp. 1093–1113.

4. Polyakov I.V., Sokolova T.V., Chepovsky A.A., Chepovsky A.M. Text classification problem and features set.

Vestn. NGU. Ser.: Informatsionnye tekhnologii [Novosibirsk State Univ. Journ. of Information

Technologies], 2015. Vol. 13. Iss. 2, Рp. 55–63 (in Russ.).

