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Abstract: the current work is devoted to mathematical modeling of wave propagation processes in
inhomogeneous media. The waveguide and resonance properties of inhomogeneous one-dimensionally periodic
media consisting of three components are considered within the framework of the one-dimensional
approximation. To describe the propagation of acoustic waves in inhomogeneous one-dimensionally periodic
structures, equations of stationary acoustic oscillations of pressure in a medium and boundary conditions
(pressure and velocity continuity) are used.

As a result of the study, a solution of the system for the fundamental cell was found. The transmission bands for
waveguide modes and the dispersion relation for all waveguide modes are found. The dependence of the
waveguide frequency on the linear concentrations of materials in the fundamental cell is found.
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Annomayun: oannas paboma noceésWeHa MAamemMamuieckoMy MOOEIUPOSAHUIO NPOYECCO8 PACHPOCIPAHEHUS.
60/IH 68 HEOOHOPOOHBIX Cpedax. B pamxax 00HOMEpHO20 NPUOIUICEHUST PACCMOMPEHbL BOJHOBOOHBIE U
DE30HAHCHbIE CEOUCMBA HEOOHOPOOHBIX 0OHOMEPHO-NEPUOOUUECKUX CPeD, COCMOAWUX U3 MpeX KOMNOHEHMO8.
ns  onucanus  pacnpocmpanenus  aKyCmMuuecKux GONH 8 HEOOHOPOOHLIX OOHOMEPHO-NEePUOOUUECKUX
CIMPYKMYPAx UCHONb3YIOMCS YPAGHEHUsT CMAYUOHAPHBIX AKYCMUYECKUX KOoAeOaHull OaeleHus & cpede U
ZpaHuunble YCosus (Hepaspvi6HOCMb O0AGleHUs U cKopocmu). B pesynemame uccnedosanus 6ui10 HailOeHo
peuienue cucmemvl 0t yHOAMeHmanbHol aveiiku. Hailoenvl nonocsl nponyckanus 80IHOB0OHbIX MOO U 3AKOH
oucnepcuu 0Nl 6CeX GOAHOBOOHLIX MOO. Hatidena 3asucumocms 4acmomsl G0IHOB00A OM  JUHEUHOU
KOHYECHMPAyul Mamepuanos 6 0CHOGHOU s4eliKe.

Knrouessle cnosa: axycmuueckue 80Jinbl 8 HCOOHOPOOHBIX CPEOax, NOJOCHL NPONYCKAHUS, (POHOHHBIL KDUCTALT,
B0NHOBOOHBIE MOObL, 3AKOH OUCNEPCUU, BUOPOUZOTAYUOHHDBLE U 36YKONOTOUAIOUUE MAMEPUATDL.

INTRODUCTION

The study of the problems of wave propagation in various media has been carried out since the 17th century.
The analysis of these problems is an important tool for solving applied problems in inhomogeneous one-
dimensionally periodic structures. Among the media in which acoustic waves propagate, the following
frequently occurring structures can be distinguished: gas bubbles in a liquid, foam materials, inhomogeneous
mixtures with periodically included components, various composite materials, granular and porous structures,
etc. Similarly, we can consider examples with electromagnetic waves. The "quartz-water-air" structure studied in
this paper is an example of a porous oil or waterflood formation. Important actions in applied problems are the
determination of pass and stop bands, acoustic sounding - finding the values of linear concentrations from given
values of phase velocities, as well as the study of the slowing down properties in inhomogeneous one-
dimensionally periodic structures.

This work originates in the articles by S.V. Sukhinin in the field of studying the acoustics of inhomogeneous
media. Works [1, 4] are taken as a basis. References [2, 3] contain the results of initial research and
bibliography. In [4], the waveguide and resonance properties of inhomogeneous permeable one-dimensionally
periodic structures consisting of two different media were studied using the one-dimensional approximation. The
passbands and blockings are defined. A dispersion relation is obtained for all waveguide modes. Explicit
expressions are found for low waveguide frequencies and the corresponding phase velocities of waveguide
modes for mono- and polydisperse media. There are several studies showing that heterogeneous multi-
component composites can have promising vibration-isolating and sound-absorbing properties (see, for example,
[5]). Based on the results of works [6, 7], vibration isolation and the effectiveness of sound protection are
illustrated by studying the propagation of a wave in a porous medium filled with liquid and gas.



The studies carried out in this work can be said to generalize the results of the above works. A feature of
studying a three-component environment is an increase in computational difficulty, since as the number of
boundaries between the media of the fundamental cell grows, so does the number of equations and the number of
free parameters. As the goal of the current work, it is considered to investigate the properties of the three-
component structure of inhomogeneities and solve the inverse problem of finding the concentration of
components from the measured values of phase velocities. The results of the study can be used to obtain new
composite materials, soundproof filters, improve damping devices and materials.

MODEL AND SYMMETRY PROPERTIES

An important feature of wave propagation in one-dimensional periodic structures is that the wave is the
propagation of the oscillation phase in fundamental cells. Due to the large number of inhomogeneities,
difficulties arise, which make it impossible to directly study the propagation of waves in inhomogeneous
periodic structures. Therefore, the study of the fine structure of the frequency spectrum of the problem, which
describes oscillations in one-dimensionally periodic structures, is of key importance.
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Fig. 1. Monodisperse chain of inhomogeneities

Let a heterogeneous one-dimensional periodic medium (Fig. 1) be composed of three media - M; = { ¢, p,},
M, ={c,p,} u My ={cg, ps5}, Where pi and c; are the density of the medium and the speed of sound,
respectively, at rest. Let us assume that a chain of inhomogeneities, consisting of components M; and M,, fills
the component M, (composite matrix), and the linear concentration of the associated layers of components is
equal to k,, k, and k5, respectively, and we assume that k; + k, + k; = 1. Indexes i = 1, 2, 3 correspond to the
environments M,, M,, M, respectively. In what follows, we assume that the densities of the media satisfy the
relation p; > p, > p5. This chain is spatially periodic, in which the smallest spatial period is equal to L. We will
consider a dimensionless variable in space x= x/L, in further reasoning we will omit the lid for simplicity of
description. In such notation, the smallest spatial period is equal to 1. A medium having such a length is called a
fundamental cell. We also introduce auxiliary parameters t;; = p;/p;, which will be an indicator of the ratio of
densities for neighboring layers, and x;; = c;/c; as the ratio of sound velocities in neighboring layers. It should
be noted that the chain, which consists of three different media, has the property of spatial periodicity. Further
calculations are carried out in dimensionless variables.
Stationary acoustic pressure oscillations with a circular frequency w in the media M1, M, M3 are described by
the following equations (Helmholtz):
pyy +Q7pM =0, O
p + Qickp® =0, p + Q'kp® =0,
where p@, p@ and p®are the acoustic pressures in the corresponding chain components, w=2nf is the
angular frequency, Q=oL/c; is the waveguide frequency (dimensionless oscillation frequency). The general
form of the solution for each medium can be described by the following equations:
p(l) — aleiQx + ble—igx' (2)
p(z) — azeigxlzx + bze—iﬂnlzx’ p(3) — a3€iQK13x + b3e—iQK13X
The conditions at the contact boundary of the components are continuity of pressure and velocity (of the
normal component) — two types of boundary conditions.

1 2
p® =p®, T21p)(c ) = P;(c ),
p® =p®, T32p9(52) = P;(c3)' ©)
3) _ (1 3 1
p® =p®, rispl = pi.

Relations (1), (2), and (3) (hereinafter — problem T) completely describe the propagation of acoustic waves in
inhomogeneous one-dimensionally periodic structures.

Symmetry properties. Due to the invariance of the wave equation with respect to local plane symmetries, the
symmetry of problem T is identified by the symmetry of the sequence of inhomogeneities. By definition, all one-



dimensional periodic structures admit the group {T}, hence the space of admissible solutions is decomposed into
invariant subspaces [2]. Since a heterogeneous chain of inhomogeneities has the property of spatial periodicity, it
can be attributed to phononic crystals (by definition). And as is known, invariants with respect to the group {T}
with respect to the space variable are all crystallographic groups. Accordingly, by the property of commutativity
{T}, we obtain that any representation of it is unitary and one-dimensional in the space of admissible solutions,
so we can decompose it into invariant one-dimensional subspaces. The cardinality of the set of invariant
resulting subspaces is infinite. Considering the symmetry properties of the medium, the solution of the problem
satisfies the Floquet theorem (conditions for shifting the phase of oscillations):

p(x +1) =p(oe®, (4)

where i is the imaginary unit, & is the phase shift of oscillations in adjacent parts of the translation group, -
n<&<m. In further reasoning, problem T together with (4) is called problem T(&).
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Fig. 2. Fundamental cell in a chain of inhomogeneities

Investigating the problem T(§) in one fundamental cell of the chain of translations, for example, on the
interval 0<x<1 and continuing the solution from the unit interval to the whole line, we get the solution.

RESULTS

For each of the layers M,, M,, M, by assumption, the linear concentrations are equal to ky,k,, ks,
respectively. The most common and most common case is the monodispersed property of the chain of

inhomogeneities. In the current problem, monodispersed is expressed in the condition k, = k, = k; = %

Taking into account the general form of solutions (2), we obtain that in the fundamental cell the boundary
conditions will be expressed by the following relations:
aleile + ble—iQk1 — azeiQk1x12 + bze—iQk;clz
a,eiQatkaiz 4 p o=iQkitkariz = g iQkatkzris 4 po=iQkitkz)rrs
TZl(aleile _ ble—ile) =Ky, (azeilexlz + bze—ilec12)
Taykrs (ape@Katkalaz 4 b e=ifkatkalinz) = o (gzei@Uatialas 4 b e=ifkitka)iis)
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Fig. 3. Boundary of two fundamental cells

The kinematic and dynamic conditions at the boundary of two fundamental cells will slightly change their

appearance due to the condition of the oscillation phase shift.
a;e 13 4 pe~i13 = q e 4 p e
T3k 3(a3e%%13 — pye~i¥13) = g e — p e~
In general, we can rewrite the properties for two neighboring cells like this:
p® (1) = pP(0)e¥,
©)] -, i (4)
T3Py (1) =py” (0)e

Dispersion ratio. Combining the equations of the problem T(§) and equations (4) for the media M,;, M,, M,
into a system, we obtain the problem TM(E), which can be written as an equivalent SLE A(Q)Y=0, where Y =
(a4, by, ay, by, as, bs) is the vector of unknown constants in (2). The matrix A(Q) of this system has the form:

eiQk1 e—ile _eiQK12k1 _eiQK21k1 0 0
/T21eiQk1 —T21€_iQk1 _KlzeiQK12k1 Kzle_iQK12k1 O 0
H 0 0 e lQK12(k1+k2) o~ iK1z (k1+kz) i3y +kz) —e—iQk13(er+ky) |
0 0 TapKyp€ iQkqyp(k1+ky) —T3,K15 e—iQKlz(k1+k2) —K3€ iQkqy3(k1+ky) K13e—iQK13(k1+k2)
_ei§ _eié 0 0 eiQK13 e—iQK13
i i iQk iQk
—e é e é 0 0 T13K13€ 13 _T13K13e 13

As is known, a nontrivial solution of a system of linear equations exists if the determinant of the matrix A(Q)
is equal to zero. Hence it turns out that the waveguide values of the TM problem are zeros of the analytical



function detA(Q). This means that the waveguide values Q*(&) of the TM problem on the real axis are discrete
and depend on & continuously on the set ||<m, and also on 7;; and k;;.

For fixed 7;j, k;;, k;, we obtain that the equation detA(Q)=0 is nothing but the dispersion relation for all
waveguide modes Q" = Q"(§), n = 1,2, ..., which are connected components of the set of all waveguide values
of the TM problem on the plane (§,Q).

2K;,K45 (cos(&) — cos(k,Q)cos(k,Qk,, cos(k;Qk,3)))
+ (k& T3, + K35T,3) cos(k, Q) sin(k,Qk,,) sin(k;Qx;3)
+ (k4143 + T31) K1, sin(k; Q) cos(k,Qk;,) sin(k;Qk;3)
+ (k2,115 + To1)Ky3 sin(k, Q) sin(k,Qk;,) cos(k;Qk,3) = 0

Long wave approach. An important study is the study of the propagation of low-frequency (long) waves
along a one-dimensionally periodic chain of inhomogeneities. In this case, it turns out that the period of the
structure and the size of the inhomogeneities are much smaller than the wavelength. As mentioned above, the
waveguide values of the TM problem are solutions to the equation detA(Q2)=0. At Q—0, the waveguide value is
the waveguide value Q'of the TM problem, which corresponds to the lowest frequency of waveguide
oscillations of a monodisperse sequence of media. Next, let us introduce the definition for such an oscillation
mode.

Assuming the decomposition of the determinant of the matrix, or the dispersion relation, in the creeping
mode approximation problem, in a Taylor series at the point at Q=0, and neglecting the terms of the order of
three (Q*) and higher, we obtain an expansion for low-frequency waves:

2[cos & — 1] + [ky (ky + kyTpy + kaTay) + kil (KyTip + Ky + k3Tap) + kaids (R Tys + kaTys + k3)1Q° = 0,
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Fig. 4. Long (low frequency) wavewhich allows one to find an approximate expression for low wave frequencies of the creeping
mode in a simple way:

2(1—cosé)
Qi) = > >
ki (kg + kpToy + k3Tay) + kol (ke Tap + Ky + k3Tap) + kakfs (ki Ty + kpTos + k)

Further, the calculations required numerical values of the densities and sound velocities of the media of the
"quartz-water-air" structure:

Table 1. The speed of sound and the density of the medium

Name of the medium Speed of sound in the medium, m/s Density of the medium, g/cm?
1. Quartz 6000 2.6

2. Water 1500 1.0

3. Air 330 12103
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Fig. 5. Dependence of the waveguide frequency of the creeping mode on concentrations

It is also possible to visualize the results obtained more clearly - to consider the bandwidth in the context as a

function of one variable.

0.014 Fr—— —T — —T T | ™ T T T T T T IT ‘
| ol |
||| | eeer | |
0.012 \ |
I|'|I |II| |I'. 'JI
\ /
oowo | I.'I 0.015F |\ /
\ ] \
d \ / a \ //
0.008 | \ \\ /
\ 0010} N P
\ / — _
0.006 | . s — _____./"
~ P —
— __—
o_ms 1 i i L 1 1 1 |
o'wo.'o o..: o.|4 0..6 ols 1 0.0 0.2 04 0.6 0.8 1

kl

Fig. 6. Bandwidth, "quartz-air" k, = 0 (left),"water-air" k; = 0 (right)

It should be noted that the waveguide frequency of the creeping mode for Q~0 depends significantly on the
linear concentrations. On Fig. 6 shows that the local minimum in both cases exists at the points k,=0.5 for
"quartz-air" and k,=0.5 for "water-air", and at the extreme points 0 and 1 the creeping mode bandwidth expands.
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Fig. 7. Dependence of the waveguide frequency for the first waveguide mode on the wave & (left) and the same in the
interval -r<¢<m (right)

It can be seen from the nature of the dependence of the waveguide frequency on the phase shift parameter

that the medium is highly dispersive.

CONCLUSION
Based on the results of this work, the following main conclusions can be drawn. In the general case, for a

one-dimensional approximation, the propagation of acoustic waves in inhomogeneous one-dimensionally
periodic structures is studied, and a dispersion relation is derived for all waveguide modes.

An expression for low waveguide frequencies is explicitly obtained in the long-wave approximation. The
pass and stop bands for the selected chain of inhomogeneities "quartz-water-air" are determined.



The results of the work can be used for further study of wave propagation in layered phononic crystals.
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