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Abstract: the current work is devoted to mathematical modeling of wave propagation processes in 

inhomogeneous media. The waveguide and resonance properties of inhomogeneous one-dimensionally periodic 

media consisting of three components are considered within the framework of the one-dimensional 

approximation. To describe the propagation of acoustic waves in inhomogeneous one-dimensionally periodic 
structures, equations of stationary acoustic oscillations of pressure in a medium and boundary conditions 

(pressure and velocity continuity) are used. 

As a result of the study, a solution of the system for the fundamental cell was found. The transmission bands for 

waveguide modes and the dispersion relation for all waveguide modes are found. The dependence of the 

waveguide frequency on the linear concentrations of materials in the fundamental cell is found. 

Keywords: acoustic waves in inhomogeneous media, transmission bands, phonon crystal, waveguide modes, 

dispersion relation, vibration-insulating and sound-absorbing materials. 
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Аннотация: данная работа посвящена математическому моделированию процессов распространения 

волн в неоднородных средах. В рамках одномерного приближения рассмотрены волноводные и 

резонансные свойства неоднородных одномерно-периодических сред, состоящих из трех компонентов. 

Для описания распространения акустических волн в неоднородных одномерно-периодических 

структурах используются уравнения стационарных акустических колебаний давления в среде и 

граничные условия (неразрывность давления и скорости). В результате исследования было найдено 

решение системы для фундаментальной ячейки. Найдены полосы пропускания волноводных мод и закон 

дисперсии для всех волноводных мод. Найдена зависимость частоты волновода от линейной 
концентрации материалов в основной ячейке.  

Ключевые слова: акустические волны в неоднородных средах, полосы пропускания, фононный кристалл, 

волноводные моды, закон дисперсии, виброизоляционные и звукопоглощающие материалы. 

 

INTRODUCTION 
The study of the problems of wave propagation in various media has been carried out since the 17th century. 

The analysis of these problems is an important tool for solving applied problems in inhomogeneous one-

dimensionally periodic structures. Among the media in which acoustic waves propagate, the following 

frequently occurring structures can be distinguished: gas bubbles in a liquid, foam materials, inhomogeneous 

mixtures with periodically included components, various composite materials, granular and porous structures, 

etc. Similarly, we can consider examples with electromagnetic waves. The "quartz-water-air" structure studied in 

this paper is an example of a porous oil or waterflood formation. Important actions in applied problems are the 

determination of pass and stop bands, acoustic sounding - finding the values of linear concentrations from given 

values of phase velocities, as well as the study of the slowing down properties in inhomogeneous one-

dimensionally periodic structures. 

This work originates in the articles by S.V. Sukhinin in the field of studying the acoustics of inhomogeneous 

media. Works [1, 4] are taken as a basis. References [2, 3] contain the results of initial research and 
bibliography. In [4], the waveguide and resonance properties of inhomogeneous permeable one-dimensionally 

periodic structures consisting of two different media were studied using the one-dimensional approximation. The 

passbands and blockings are defined. A dispersion relation is obtained for all waveguide modes. Explicit 

expressions are found for low waveguide frequencies and the corresponding phase velocities of waveguide 

modes for mono- and polydisperse media. There are several studies showing that heterogeneous multi-

component composites can have promising vibration-isolating and sound-absorbing properties (see, for example, 

[5]). Based on the results of works [6, 7], vibration isolation and the effectiveness of sound protection are 

illustrated by studying the propagation of a wave in a porous medium filled with liquid and gas. 



 

The studies carried out in this work can be said to generalize the results of the above works. A feature of 

studying a three-component environment is an increase in computational difficulty, since as the number of 

boundaries between the media of the fundamental cell grows, so does the number of equations and the number of 

free parameters. As the goal of the current work, it is considered to investigate the properties of the three-

component structure of inhomogeneities and solve the inverse problem of finding the concentration of 

components from the measured values of phase velocities. The results of the study can be used to obtain new 

composite materials, soundproof filters, improve damping devices and materials. 

MODEL AND SYMMETRY PROPERTIES 
An important feature of wave propagation in one-dimensional periodic structures is that the wave is the 

propagation of the oscillation phase in fundamental cells. Due to the large number of inhomogeneities, 

difficulties arise, which make it impossible to directly study the propagation of waves in inhomogeneous 

periodic structures. Therefore, the study of the fine structure of the frequency spectrum of the problem, which 

describes oscillations in one-dimensionally periodic structures, is of key importance. 
 

 
 

Fig. 1. Monodisperse chain of inhomogeneities 
 

Let a heterogeneous one-dimensional periodic medium (Fig. 1) be composed of three media - 𝑀1 = { c1, 𝜌1}, 
𝑀2 = { c2, 𝜌2} и 𝑀3 = { c3, 𝜌3}, where ρi and ci are the density of the medium and the speed of sound, 

respectively, at rest. Let us assume that a chain of inhomogeneities, consisting of components 𝑀1 and 𝑀2, fills 
the component 𝑀3 (composite matrix), and the linear concentration of the associated layers of components is 

equal to 𝑘1, 𝑘2 and 𝑘3, respectively, and we assume that 𝑘1 + 𝑘2 + 𝑘3 = 1. Indexes i = 1, 2, 3 correspond to the 

environments 𝑀1, 𝑀2, 𝑀3, respectively. In what follows, we assume that the densities of the media satisfy the 

relation 𝜌1 > 𝜌2 > 𝜌3. This chain is spatially periodic, in which the smallest spatial period is equal to L. We will 

consider a dimensionless variable in space 𝑥
∧
= 𝑥 𝐿⁄ , in further reasoning we will omit the lid for simplicity of 

description. In such notation, the smallest spatial period is equal to 1. A medium having such a length is called a 

fundamental cell. We also introduce auxiliary parameters 𝜏𝑖𝑗 = 𝜌𝑖/𝜌𝑗, which will be an indicator of the ratio of 

densities for neighboring layers, and 𝜅𝑖𝑗 = 𝑐𝑖/𝑐𝑗 as the ratio of sound velocities in neighboring layers. It should 

be noted that the chain, which consists of three different media, has the property of spatial periodicity. Further 

calculations are carried out in dimensionless variables. 

Stationary acoustic pressure oscillations with a circular frequency  in the media M1, M2, M3 are described by 
the following equations (Helmholtz): 

𝑝𝑥𝑥
(1) +Ω

2𝑝(1) = 0, 

𝑝𝑥𝑥
(2) +Ω

2𝜅12
2 𝑝(2) = 0,  𝑝𝑥𝑥

(2) +Ω
2𝜅13

2 𝑝(2) = 0, 
(1) 

where 𝑝(1), 𝑝(2)  and 𝑝(3)are the acoustic pressures in the corresponding chain components, ω=2πf is the 

angular frequency, Ω=ωL/𝑐1 is the waveguide frequency (dimensionless oscillation frequency). The general 
form of the solution for each medium can be described by the following equations: 

𝑝(1) = 𝑎1𝑒
𝑖Ω𝑥 + 𝑏1𝑒

−𝑖Ω𝑥 , 
𝑝(2) = 𝑎2𝑒

𝑖Ω𝜅12𝑥 + 𝑏2𝑒
−𝑖Ω𝜅12𝑥 ,  𝑝(3) = 𝑎3𝑒

𝑖Ω𝜅13𝑥 + 𝑏3𝑒
−𝑖Ω𝜅13𝑥 

(2) 

The conditions at the contact boundary of the components are continuity of pressure and velocity (of the 

normal component) – two types of boundary conditions. 

𝑝(1) = 𝑝(2),   

𝑝(2) = 𝑝(3),   

𝑝(3) = 𝑝(1),   

𝜏21𝑝𝑥
(1)
= 𝑝𝑥

(2)
, 

𝜏32𝑝𝑥
(2)
= 𝑝𝑥

(3)
, 

𝜏13𝑝𝑥
(3) = 𝑝𝑥

(1). 

(3) 

Relations (1), (2), and (3) (hereinafter – problem T) completely describe the propagation of acoustic waves in 

inhomogeneous one-dimensionally periodic structures. 

Symmetry properties. Due to the invariance of the wave equation with respect to local plane symmetries, the 

symmetry of problem T is identified by the symmetry of the sequence of inhomogeneities. By definition, all one-



 

dimensional periodic structures admit the group {T}, hence the space of admissible solutions is decomposed into 

invariant subspaces [2]. Since a heterogeneous chain of inhomogeneities has the property of spatial periodicity, it 

can be attributed to phononic crystals (by definition). And as is known, invariants with respect to the group {T} 

with respect to the space variable are all crystallographic groups. Accordingly, by the property of commutativity 

{T}, we obtain that any representation of it is unitary and one-dimensional in the space of admissible solutions, 

so we can decompose it into invariant one-dimensional subspaces. The cardinality of the set of invariant 

resulting subspaces is infinite. Considering the symmetry properties of the medium, the solution of the problem 

satisfies the Floquet theorem (conditions for shifting the phase of oscillations): 

𝑝(𝑥 + 1) = 𝑝(𝑥)𝑒𝑖𝜉, (4) 

where 𝑖 is the imaginary unit, ξ is the phase shift of oscillations in adjacent parts of the translation group, -
π<ξ<π. In further reasoning, problem T together with (4) is called problem T(ξ). 

 

 
 

Fig. 2. Fundamental cell in a chain of inhomogeneities 
 

Investigating the problem T(ξ) in one fundamental cell of the chain of translations, for example, on the 

interval 0<x<1 and continuing the solution from the unit interval to the whole line, we get the solution. 

RESULTS 

For each of the layers 𝑀1, 𝑀2, 𝑀3, by assumption, the linear concentrations are equal to 𝑘1 , 𝑘2 , 𝑘3, 

respectively. The most common and most common case is the monodispersed property of the chain of 

inhomogeneities. In the current problem, monodispersed is expressed in the condition 𝑘1 = 𝑘2 = 𝑘3 =
1

3
. 

Taking into account the general form of solutions (2), we obtain that in the fundamental cell the boundary 

conditions will be expressed by the following relations: 

𝑎1𝑒
𝑖Ω𝑘1 + 𝑏1𝑒

−𝑖Ω𝑘1 = 𝑎2𝑒
𝑖Ω𝑘1𝜅12 + 𝑏2𝑒

−𝑖Ω𝑘𝜅12 

𝑎2𝑒
𝑖Ω(𝑘1+𝑘2)𝜅12 + 𝑏2𝑒

−𝑖Ω(𝑘1+𝑘2)𝜅12 = 𝑎3𝑒
𝑖Ω(𝑘1+𝑘2)𝜅13 + 𝑏3𝑒

−𝑖Ω(𝑘1+𝑘2)𝜅13 

𝜏21(𝑎1𝑒
𝑖Ω𝑘1 − 𝑏1𝑒

−𝑖Ω𝑘1) = 𝜅12(𝑎2𝑒
𝑖Ω𝑘1𝜅12 + 𝑏2𝑒

−𝑖Ω𝑘𝜅12) 
𝜏32𝜅12(𝑎2𝑒

𝑖Ω(𝑘1+𝑘2)𝜅12 + 𝑏2𝑒
−𝑖Ω(𝑘1+𝑘2)𝜅12) = 𝜅13(𝑎3𝑒

𝑖Ω(𝑘1+𝑘2)𝜅13 + 𝑏3𝑒
−𝑖Ω(𝑘1+𝑘2)𝜅13) 

 

 
 

Fig. 3. Boundary of two fundamental cells 
 

The kinematic and dynamic conditions at the boundary of two fundamental cells will slightly change their 

appearance due to the condition of the oscillation phase shift. 

𝑎3𝑒
𝑖Ωκ13 + 𝑏3𝑒

−𝑖Ωκ13 = 𝑎1𝑒
𝑖ξ + 𝑏1𝑒

−𝑖ξ 

𝜏13𝜅13(𝑎3𝑒
𝑖Ωκ13 − 𝑏3𝑒

−𝑖Ωκ13) = 𝑎1𝑒
𝑖ξ − 𝑏1𝑒

−𝑖ξ 
In general, we can rewrite the properties for two neighboring cells like this: 

𝑝(3)(1) = 𝑝(1)(0)𝑒𝑖𝜉 , 

𝜏13𝑝𝑥
(3)(1) = 𝑝𝑥

(1)(0)eiξ 
(4) 

Dispersion ratio. Combining the equations of the problem T(ξ) and equations (4) for the media 𝑀1, 𝑀2, 𝑀3 
into a system, we obtain the problem ТМ(ξ), which can be written as an equivalent SLE A(Ω)Y=0, where 𝑌 =
(𝑎1, 𝑏1 , 𝑎2, 𝑏2, 𝑎3, 𝑏3) is the vector of unknown constants in (2). The matrix A(Ω) of this system has the form: 

(

 
 
 
 

𝑒 𝑖Ω𝑘1 𝑒−𝑖Ω𝑘1 −𝑒 𝑖Ωκ12𝑘1 −𝑒 𝑖Ωκ21𝑘1 0 0
𝜏21𝑒

𝑖Ω𝑘1 −𝜏21𝑒
−𝑖Ω𝑘1 −𝜅12𝑒

𝑖Ω𝜅12𝑘1 𝜅21𝑒
−𝑖Ωκ12𝑘1 0 0

0 0 𝑒 𝑖Ωκ12(𝑘1+𝑘2) 𝑒−𝑖Ωκ12(𝑘1+𝑘2) −𝑒 𝑖Ωκ13(𝑘1+𝑘2) −𝑒−𝑖Ωκ13(𝑘1+𝑘2)

0 0 𝜏32𝜅12𝑒
𝑖Ωκ12(𝑘1+𝑘2) −𝜏32𝜅12𝑒

−𝑖Ωκ12(𝑘1+𝑘2) −𝜅13𝑒
𝑖Ωκ13(𝑘1+𝑘2) 𝜅13𝑒

−𝑖Ωκ13(𝑘1+𝑘2)

−𝑒 𝑖ξ −𝑒 𝑖ξ 0 0 𝑒 𝑖Ωκ13 𝑒−𝑖Ωκ13

−𝑒 𝑖ξ 𝑒 𝑖ξ 0 0 𝜏13𝜅13𝑒
𝑖Ωκ13 −𝜏13𝜅13𝑒

𝑖Ωκ13 )

 
 
 
 

 

As is known, a nontrivial solution of a system of linear equations exists if the determinant of the matrix A(Ω) 

is equal to zero. Hence it turns out that the waveguide values of the TM problem are zeros of the analytical 



 

function detA(Ω). This means that the waveguide values Ω*(ξ) of the TM problem on the real axis are discrete 

and depend on ξ continuously on the set |ξ|<π, and also on 𝜏𝑖𝑗 and 𝜅𝑖𝑗. 

For fixed 𝜏𝑖𝑗 , 𝜅𝑖𝑗 , 𝑘𝑖 , we obtain that the equation detA(Ω)=0 is nothing but the dispersion relation for all 

waveguide modes Ω
𝑛 = Ω

𝑛(𝜉), 𝑛 = 1,2,…, which are connected components of the set of all waveguide values 
of the TM problem on the plane (ξ,Ω). 

2𝜅12𝜅13(cos(𝜉) − cos⁡(k1Ω)cos⁡(𝑘2Ω𝜅12 cos(𝑘3Ω𝜅13)))
+ (𝜅12

2 𝜏32 + 𝜅13
2 𝜏23) cos(k1Ω)sin(𝑘2Ω𝜅12) sin(𝑘3Ω𝜅13)

+ (𝜅13
2 𝜏13 + 𝜏31)𝜅12 sin(k1Ω) cos(𝑘2Ω𝜅12) sin(𝑘3Ω𝜅13)

+ (𝜅12
2 𝜏12 + 𝜏21)𝜅13 sin(k1Ω) sin(𝑘2Ω𝜅12) cos(𝑘3Ω𝜅13) = 0 

Long wave approach. An important study is the study of the propagation of low-frequency (long) waves 

along a one-dimensionally periodic chain of inhomogeneities. In this case, it turns out that the period of the 
structure and the size of the inhomogeneities are much smaller than the wavelength. As mentioned above, the 

waveguide values of the TM problem are solutions to the equation detA(Ω)=0. At Ω→0, the waveguide value is 

the waveguide value Ω
1
of the TM problem, which corresponds to the lowest frequency of waveguide 

oscillations of a monodisperse sequence of media. Next, let us introduce the definition for such an oscillation 

mode. 

Assuming the decomposition of the determinant of the matrix, or the dispersion relation, in the creeping 

mode approximation problem, in a Taylor series at the point at Ω=0, and neglecting the terms of the order of 

three (Ω
3
) and higher, we obtain an expansion for low-frequency waves: 

2[cos 𝜉 − 1] + [𝑘1(𝑘1 + 𝑘2𝜏21 + 𝑘3𝜏31) + 𝑘2𝜅12
2 (𝑘1𝜏12 + 𝑘2 + 𝑘3𝜏32) + 𝑘3𝜅13

2 (𝑘1𝜏13 + 𝑘2𝜏23 + 𝑘3)]Ω
2 = 0, 

 

 
 

Fig. 4. Long (low frequency) wavewhich allows one to find an approximate expression for low wave frequencies of the creeping 

mode in a simple way: 
 

Ω
1(𝜉) = √

2(1 − cos 𝜉)

𝑘1(𝑘1 + 𝑘2𝜏21 + 𝑘3𝜏31) + 𝑘2𝜅12
2 (𝑘1𝜏12 + 𝑘2 + 𝑘3𝜏32) + 𝑘3𝜅13

2 (𝑘1𝜏13 + 𝑘2𝜏23 + 𝑘3)
 

 

Further, the calculations required numerical values of the densities and sound velocities of the media of the 

"quartz-water-air" structure:  
 

Table 1. The speed of sound and the density of the medium 
 

Name of the medium Speed of sound in the medium, m/s Density of the medium, g/cm3 

1. Quartz 6000 2.6 

2. Water 1500 1.0 

3. Air 330 1.2 10-3 

 



 

  
 

Fig. 5. Dependence of the waveguide frequency of the creeping mode on concentrations 
 

It is also possible to visualize the results obtained more clearly - to consider the bandwidth in the context as a 

function of one variable. 
 

  
 

Fig. 6. Bandwidth, "quartz-air" 𝑘2 = 0 (left),"water-air" 𝑘1 = 0 (right) 

 
 

It should be noted that the waveguide frequency of the creeping mode for Ω≈0 depends significantly on the 

linear concentrations. On Fig. 6 shows that the local minimum in both cases exists at the points 𝑘1=0.5 for 

"quartz-air" and 𝑘2=0.5 for "water-air", and at the extreme points 0 and 1 the creeping mode bandwidth expands. 
 

  
 

Fig. 7. Dependence of the waveguide frequency for the first waveguide mode on the wave ξ (left) and the same in the 

interval -π<ξ<π (right) 
 

 

It can be seen from the nature of the dependence of the waveguide frequency on the phase shift parameter 

that the medium is highly dispersive. 

CONCLUSION 
Based on the results of this work, the following main conclusions can be drawn. In the general case, for a 

one-dimensional approximation, the propagation of acoustic waves in inhomogeneous one-dimensionally 

periodic structures is studied, and a dispersion relation is derived for all waveguide modes. 

An expression for low waveguide frequencies is explicitly obtained in the long-wave approximation. The 

pass and stop bands for the selected chain of inhomogeneities "quartz-water-air" are determined. 



 

The results of the work can be used for further study of wave propagation in layered phononic crystals. 
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